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Abstract. A theory of probability distributions of temperature and concentration fluctuations
in turbulence of binary mixtures is presented. The Soret and Dufour effects couple concentration
and temperature fluctuations modifying the scalar dissipation rates and the fluctuation–dissipation
relations usual in one-component systems.

1. Introduction

Probability density function (PDF) of fluctuations is of increasing interest in turbulence.
Recently much experimental and numerical data for derivatives and differences of velocity
and scalar fields have been accumulated. The PDFs of these quantities are found to be non-
Gaussian [1–3]. The discovery of nearly exponential temperature fluctuations in convection
has stimulated a considerable number of studies on PDFs [4–7].

In one-component systems, the equations of the fluctuations of passive scalars,
temperature fluctuationT and concentration fluctuationc, diffusing in a random
incompressible velocity field are

∂T

∂t
+ v · ∇T = k1T (1)

∂c

∂t
+ v · ∇c = D1c (2)

and

∇ · v = 0 (3)

wherek andD are the thermal conductivity and the matter diffusion coefficient.
Using equations (1) and (3), Sinai and Yakhot [4] derived a fluctuation–dissipation

relation for the case when the system is homogeneous and the temperature field is not
forced. Moreover, using these relations the above authors obtained a closed form for the
asymptotic PDF of the decaying temperature fluctuations in homogeneous systems.

Later, Ching [7] extended these results to the case of turbulent convection. The
theoretical predictions of this author agree quite well (except for very limiting cases) with
the experimental data.

The description of a binary fluid mixture requires additional parameters. Soret and
Dufour’s effects introduce important differences with the case of one-component fluids.
Waldenet al [8] studied Rayleigh–B́enard convection in alcohol–water mixtures, in which
the diffusion of concentration oppose convection via the Soret effect. Near onset, the
convection rolls are found to move continuously as travelling waves, in contrast to the
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stationary roll patterns observed in homogeneous fluids. On the other hand, Linz proposed
[9], that internal temperature variations, which are driven by the Dufour effect, can have a
significant influence on the stability boundaries of the quiescent state of a convective binary
mixture.

The crossed effects can also be present in turbulence. One of the most important features
of turbulent flows is the enhancement of diffusivity and other transport coefficients. The
rates of transfer and mixing are several orders of magnitude greater than the rates due to
molecular diffusion. The author, in collaboration with Llebot, has considered the importance
of the crossed fluxes in the framework of turbulent theories [10]. A calculation based on
kinetic theory shows that Soret and Dufour’s effects are enhanced by turbulence.

Taking into account all of these considerations which suggest the existence of some
differences between one-component systems and mixtures it seems to be necessary to
study fluctuation–dissipation relations and PDFs of temperature and concentration in binary
mixtures.

This paper is organized as follows. In section 2 we derive the fluctuation–dissipation
relations for binary mixtures in the case where the scalar fluctuations of temperature and
concentration are not forced. In section 3 we use the fluctuation–dissipation relations
obtained in the previous section to derive the PDFs in decaying turbulence. In section 4 we
present the extension of the above results to the case of convective turbulence. Finally, in
section 5, we emphasize the main results of this paper and consider if the results obtained
in the previous sections can be experimentally tested.

2. Fluctuation–dissipation relations

As it is well known from non-equilibrium thermodynamics [11], when Soret and Dufour
effects are taken into account, equations (1) and (2) transform into

∂T

∂t
+ v · ∇T = k1T +H1c (4)

and
∂c

∂t
+ v · ∇c = D1c + S1T . (5)

The new terms,−H∇c and−S∇T , represent the Dufour heat flux, driven by a gradient
of concentration fluctuations, and the Soret matter flux, driven by a gradient of temperature
fluctuations.H andS are phenomenological coefficients.

We now discuss the validity of the basic equations presented. Equations (1) and (2)
have been systematically used in nonturbulent and turbulent problems reproducing quite
well the experimental results [4, 7, 11]. On the other hand, equations (4) and (5) agree
quite well with the experiments in nonturbulent situations [8, 9, 11]. Then, taking into
account the validity of the related equations (1) and (2) in both regimes, we can expect that
equations (4) and (5) will be adequate to describe the turbulent behaviour of temperature and
concentration in binary mixtures. In equations (1) and (4) the term describing the viscous
dissipation [11, 12], has been neglected. This term is usually neglected in comparison with
the direct conduction term in the case of turbulent single fluids, justifying its absence in
equation (1) and in accordance with numerous theoretical and experimental evidence [4, 12].
We can expect that this viscous term can also be neglected in comparison with the crossed
or Dufour conduction term in the most interesting situations. Effectively, in nonturbulent
systems in the usual situations the viscous term is always much smaller than the Dufour one
[12]. In the situations interesting for the crossed effects (those in which the effects can be
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measured) the crossed effects must be comparable to the direct ones. In [10] it was shown
that the order of magnitude of the ratio between direct and crossed effects is equal in the
turbulent and nonturbulent regimes. Then, if in these types of situations the magnitude of
the turbulent viscous term was comparable to those of the turbulent Dufour term it would
also be comparable (in these situations the direct and crossed effects are comparable) to the
direct one in contrast to our previous considerations. On the other hand, it is well known
that equation (2) can only be rigorously derived in isothermal conditions [11]. However, it
agrees quite well with experimental data even in the highly nonisothermal conditions of the
hard-turbulence convection [1]. Therefore, equation (2) is adequate to describe these types
of problems. Arguments similar to those presented for the case of the neglected viscous
term justify the use of equation (5) even in these highly nonisothermal conditions. We
must remark that the validity of these equations, finally, must only rest in the agreement of
their predictions with the experimental studies. The transport coefficients show, in general,
dependence on the different thermodynamic variables. In particular, the mass diffusion
coefficient dependence on temperature,D = D(T ), must be studied carefully because a
dependence of these form represents a new type of coupling between mass transfer and
temperature differences that can be superposed to the Soret effect. The importance of
these coupling effect depends on the particular mixture considered, the actual values of the
thermodynamic variables, etc and we cannot obtain general conclusions about the magnitude
of the effect. From an experimental point of view we can analyse separately both types of
contributions. We can study experimentally the dependenceD = D(T ) of every component
of the mixture as a single fluid. Using this information and studying the behaviour of the
mixture we can, essentially, separate both types of effects. In the case of nonturbulent flows
these coupling can be neglected in comparison with the Soret effect. Using an argument
similar to those presented in the discussion of the validity of the basic equations we can
expect that in the turbulent regime these coupling will also be smaller than the Soret effect.
Note, finally, that the sign of the mass diffusion coefficient does not change with the variation
of the temperature whereas the sign of the Soret coefficient can change with the variation
of the concentration and temperature of the mixture. First, we consider the fluctuation–
dissipation relations of temperature fluctuations. Note that the above equations are only
valid when we consider fluctuations of scalars that are not forced and the scalar fluctuations
are, as a result, decaying. Multiplying equation (4) byT and taking spatial averages we
derive an equation forQ = 〈T 2〉, the covariance of the temperature fluctuation

∂Q

∂t
= −2〈k(∇T )2+H(∇T ) · (∇c)〉. (6)

To obtain equation (6) we have used the following boundary conditions,v · dS =
0,∇T · dS = 0 and ∇c · dS = 0 with S the normal vector to the surface of the
boundary. These are the usual conditions for a rigid boundary with no interchange of
mass or heat. This form is imposed by the characteristics of the problem considered
here, decaying turbulence without interchange of mass in a closed vessel. These boundary
conditions give the following properties of the spatial average,〈v ·∇T 2〉 = 0= 〈1T 2〉 and
〈T1c〉 = −〈∇c · ∇T 〉, that have been used to derive equation (6). Note that the boundary
conditions used in this section are different from those that will be used in section 4 in
which convective turbulence is considered. In these cases the boundary conditions for the
temperature must be modified (for instance in Rayleigh–Bénard convection is usual to use
a constant temperature at the boundaries).
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The equation of the variablesT 2n is also derived from equation (4), multiplying it now
by T 2n−1

∂T 2n

∂t
+ v · ∇T 2n = k∇T 2n − 2nk(2n− 1)T 2n−2(∇T )2+ 2nHT 2n−11c. (7)

The next step is to introduce the normalized temperatureX = T/Q1/2. The equation for
X2n is easily derived

∂X2n

∂t
− 2nX2nQ−1〈k(∇T )2+H(∇T ) · (∇c)〉 + v · ∇X2n

= k1X2n − 2nk(2n− 1)X2n−2Q−1(∇T )2+ 2nHX2n−1Q−1/21c. (8)

Averaging the last equation spatially, we obtain in the stationary state

Q−1〈X2n〈k(∇T )2+H(∇T ) · (∇c)〉〉
= (2n− 1)kQ−1〈X2n−2(∇T )2〉 −HQ−1/2〈X2n−11c〉. (9)

The right-hand side of the last equation can easily be transformed using the relation

〈X2n−11c〉 = 〈∇(X2n−1∇c)〉 − 〈∇X2n−1 · ∇c〉
= −(2n− 1)〈X2n−2(∇X) · (∇c)〉
= −(2n− 1)Q−1/2〈X2n−2(∇T ) · (∇c)〉. (10)

Then, equation (9) becomes

〈X2n〈k(∇T )2+H(∇T ) · (∇c)〉〉 = (2n− 1)〈X2n−2(k(∇T )2+H(∇T ) · (∇c))〉. (11)

This is equivalent to

〈X2n〉 = (2n− 1)〈X2n−2Z/〈Z〉〉 (12)

where

Z = k(∇T )2+H(∇T ) · (∇c) (13)

〈Z〉 is, in accordance with equation (6), the mean dissipation rate of the fluctuations of the
temperature scalar field.

Equations (11) and (12) are the generalization of the fluctuation–dissipation relation to
binary mixtures. An important property of the above expressions is that all moments of the
X variable can be determined from the correlations ofX2n with the variableZ.

When the Dufour effect is neglected,H = 0, we recover the usual relation in one-
component systems

〈X2n〉 = (2n− 1)〈X2n−2(∇T )2/〈(∇T )2〉〉. (14)

Equation (12) expresses the moments of the variableX in terms of the conditional
expectation value of the normalized scalar dissipation rate. These equations can be written
directly in terms of the fluctuation fluxes. If we denote the heat flux byJQ = JQT + JQc,
with JQT = −k∇T the direct term, andJQc = −H∇c the crossed one,Z is

Z = k−1(J2
QT + JQT · JQc). (15)

An important difference between one-component systems and binary mixtures emerges from
the above analysis. In the case of single fluids the dissipation rate only depends on(∇T )2,
whereas in mixtures the dissipation rate is also a function of(∇T ) ·(∇c); in binary mixtures
the local gradients of concentration fluctuations can modify the dissipation rate of the
temperature fluctuations. In one-component systems these local fluctuation concentration
gradients do not induce changes on the dissipation rate of the temperature fluctuations.
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The fluctuation–dissipation relation for the concentration can be derived following the
same steps of the temperature case. IfY ∗ = c/〈c2〉1/2, we have

〈Y 2n〉 = (2n− 1)〈Y (2n−2)Z∗/〈Z∗〉〉 (16)

where

Z∗ = D(∇c)2+ S(∇T ) · (∇c) = D−1(J2
Mc + JMc · JMT ) (17)

with the matter flux given byJM = JMc + JMT . The subscriptsMc andMT refer to the
direct term and the Soret component.

The physical interpretation of equations (16) and (17) is similar to the interpretation of
equations (12) and (13).

Note thatZ andZ∗, the two scalar dissipation rates, depend on the gradients of the
two scalar fluctuations. Consequently, the two sets of fluctuation–dissipation relations are
coupled relations and not independent relations as it is the case in one-component systems.
These statistical correlations reflect at the statistical level the crossed effects present in the
dynamics of the system.

3. Probability density functions of decaying fluctuations

In the previous section we obtained the fluctuation–dissipation relations in binary mixtures.
Now, we must study the PDFs that can be derived from these relations. As the fluctuation–
dissipation relations above derived only hold for passive fluctuations, the PDFs that
we shall obtain in this section will also be only valid for decaying fluctuations. The
fluctuation–dissipation relations constitute an infinite set of moment relations. Instead
of this complicated mathematical picture we want to express the probability densities
as functions of only two statistical variables. We begin by writing the fluctuation–
dissipation relations in a more compact form;〈X2n〉 = (2n − 1)〈X2n−2(u2 + U)〉 and
〈Y 2n〉 = (2n − 1)〈Y 2n−2(w2 + W)〉 where u2 = k(∇T )2/〈Z〉, w2 = D(∇c)2/〈Z∗〉,
U = H(∇T ) · (∇c)/〈Z〉 and W = S(∇T ) · (∇c)/〈Z∗〉. U, u,w and W are the new
variables of the problem. Assuming that volume averaging is equivalent to ensemble
averaging we introduce the stationary probability densityP . Because of the dynamic
coupling between the scalar fluctuations due to the crossed effects, the probability density
will read asP = P(X, u,U, Y,w,W). In other words, the probability density cannot be
factored in the formP = Px(X, u,U)Py(Y,w,W), as it is the case in one-component
systems.

Introducing the joint probability distributionP in equation (12), the fluctuation–
dissipation relation for the temperature can be written as follows∫
X2nP dX du dU dY dw dW =

∫
(X2n−1)′(u2+ U)P dX du dU dY dw dW (18)

where the prime denotes theX derivative of the variable considered. Now we introduce
qx , the conditional probability of the variablesu,U, Y,w andW for a given value of the
variableX,P (X, u,U, Y,w,W) = Px(X)qx(u, U, Y,w,W ;X). Using this new expression
for the joint probability equation (18) becomes∫

X2nPx(X) dX =
∫
(X2n−1)′Px(X)(qxu + qxU ) dX. (19)

To obtain equation (19) we used the normalization condition
∫
qx du dU dY dw dW = 1.

The new functions

qxu(X) =
∫
qx(u,U, Y,w,W ;X)u2 du dU dY dw dW (20)
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and

qxU (X) =
∫
qx(u,U, Y,w,W ;X)U du dU dY dw dW (21)

are the expectation values ofu2 andU for a given value ofX. After simple manipulations
equation (19) becomes∫

X2n−1

(
XPx − ∂Px

∂X
(qxu + qxU )− Px ∂(qxu + qxU )

∂X

)
dX = 0. (22)

Equation (22) is satisfied for an arbitraryn only when the expression in the square brackets
of the integrand in (22) is equal to zero. This gives the differential equation forPx with
the solution

Px(X) = C

qxu(X)+ qxU (X) exp

(
−
∫ X

0

z dz

qxu(z)+ qxU (z)
)

(23)

whereC is the normalization constant.
Equation (23) gives the probability density defined by two variables only,qxu and

qxU , instead of the infinite set of moment relations provided by the fluctuation–dissipation
relations. To make further progress we need an expression for the expectation values. One
way to obtain this expression is to derive it experimentally or via numerical simulation.
However, up to now, there have not been studies about binary mixtures in any of the
two fields. Then, we must propose an expression of theq ’s based only on analytical
considerations. In particular, we shall follow the approach of Sinai and Yakhot [4]. These
authors proposed for the one-component systems an expression of the formq1(X) =
1+ k∗X2 with k∗ a constant andq1 = qu (when the crossed effects are neglected). Using
these expression they obtained a PDF for the problem that reproduced quite well the data of
a numerical simulation. In the case of binary mixtures, as the crossed effects are small in
comparison with the direct ones, we can expect a rather similar expression. To obtain the
actual form of these expressions we must remark on a property that differentiates the one-
and two-component dynamics. The one-component dynamics is invariant under the change
of sign of the temperature,T → −T , because−T is also a solution of equation (1). If
the dynamics is invariant under these changes we must expect that the expectation values,
that are only statistical properties of the underlying dynamics, will also be invariant under
the changeX → −X (provided that we are considering an isotropic problem). Then, the
expectation values of an isotropic problem of a one-component system are restricted by
the condition of being a series of even powers ofX. We now consider the case of two-
component systems. In binary systems the dynamics is not invariant under the change
T → −T (the dynamics is invariant under the simultaneous changesT → −T and
c → −c). Therefore, if the underlying dynamics is not invariant we cannot expect the
expectation values to be invariant under the changeX→ −X. The expectation values are
not, in general, symmetric under these changes and now we can have odd powers ofX.

At this point we are in a position to write an expression for the expectation values in a
binary mixture. Taking into account that the crossed effects are small and that now we can
have odd powers ofX we propose the following expression

qxu(X)+ qxU (X) = 1+ dX + EX2 (24)

whered andE are two new coefficients.
Substituting this expression into (23) and resolving simple integrals we obtain the PDFs.

We must consider two different cases.



Probability density functions in binary mixtures 6415

(A) r = 4E − d2 < 0

Px(X) = C(1+ dX + EX2)−[1+(2E)−1]

(
1+M−X
1+M+X

)M
(25)

whereM± = 2E/(d ± [−r]1/2) andM = d/2E(−r)1/2.
(B) r = 4E − d2 > 0

Px(X) = C ′(1+ dX + EX2)−[1+(2E)−1] exp

(
d

Er1/2

(
tg

2EX + d
r1/2

)−1
)

(26)

whereC ′ = C exp(−d[Er1/2 tg(dr−1/2)]−1).
We must study the sign ofd2− 4E for every particular binary mixture. When the sign

is positive we must use equation (25) and when is negative we must use equation (26). In
any of the two cases the probability distribution will not be symmetricPx(−X) 6= Px(X).
This is a property that can, in principle, differentiate one-component systems and binary
mixtures.

We remark that equation (24) is an assumption independent of the general theory
presented and expressed by equations (20), (21) and (23). An experimental study of the
PDFs would also be a test of the validity of equation (24).

Note that the symmetries of equation (1) under the change of sign of temperature, and
equations (4) and (5) under simultaneous changes of sign of temperature and concentration
are only valid when the viscous dissipation is neglected. When the viscous term is taken
into account in equations (1) and (4) all the terms change the sign under the change of sign
of the temperature, except the viscous term that remains unchanged [11, 12] (this term can
depend on the temperature through the shear viscosity coefficient, but this dependence is
not linear). Then, these symmetries are not exact and are only valid in the approximation
of negligible viscous dissipation effects.

One can introduce the functionsPy(Y ), qy . . . just in the same way asPx(X), qx . . .
and one expects the existence of symmetry relations between the functionsqy and qx . . ..
A possible way to study these relations is based on the symmetries of the basic equations.
Instead of the symmetry under the change of sign of temperature and concentration we shall
consider now another symmetry. Equations (4) and (5) are invariant under the simultaneous
changesc ↔ T ,D ↔ k andS ↔ H . From this symmetry it is clear that all the statistical
properties referred to variablesX andY must have the same analytical form. The difference
between both types of expressions is given by the different values of the transport coefficients
(in a dimensionless form of the equations). In particular, the expression for equation (24)
in the case of the variableY is qYw(Y ) + qYW (Y ) = 1+ d ′Y + E′Y 2. It is not simple to
obtain an evaluation of the relation between the numerical values of the two expressions
using only the symmetry properties. We only expect that they will be different because of
the different values of the transport coefficients.

4. Probability density functions in convective turbulence

In the previous two sections we considered the fluctuation–dissipation relations and the PDFs
of not forced scalar fluctuations. In this section we want to extend these results to convective
turbulence. In the case of one-component systems Ching proposed in an interesting work
[7], that a similar fluctuation–dissipation relation〈X2n〉 = (2n− 1)〈X2n−2R2〉 is also valid
in convective turbulence if we useR = (∂T /∂t)/〈(∂T /∂t)2〉1/2, the normalized temperature
derivative. Theq ’s become in this approachq(x) = 〈(∂T /∂t)2〉X=x/〈(∂T /∂t)2〉. The
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subscriptsX = x indicate that the mean square is to be calculated at a given value,
x, of the normalized fluctuationX. The PDFs obtained in this way agree quite well
with the experimental data (except in the case of very large fluctuations for very short
time separations), justifying the assumption made in the generalization of the fluctuation–
dissipation relations.

Following the proposal of Ching, in the case of binary convective turbulence we suppose
that equation (12) is valid if we substituteZ by

DT

Dt
= k

(
∂T

∂t

)2

+H ∂T
∂t

∂c

∂t
. (27)

Just in the same way, we assume that equation (16) is valid if we substituteZ∗ by

Dc

Dt
= D

(
∂c

∂t

)2

+ S ∂c
∂t

∂T

∂t
. (28)

These assumptions in situations where the system is forced are not obvious and might be
justified by considerations of universality of fluctuations in turbulence and by the good
results of the similar proposal in one-component systems.

The PDFs of the temperature are given by the expression

Px(X) = C

qx(X)
exp

(
−
∫ X

0

z dz

qx(z)

)
(29)

where theq ’s are now given by

qx(x) = 〈(DT/Dt)
2〉X=x

〈(DT/Dt)2〉 . (30)

A similar expression holds for the concentration fluctuations. Equations (29) and (30)
explicitly relate the PDFs of temperature fluctuations to the statistics of the temperature and
concentration derivatives. The discussion of the physical meaning of these equations follows
closely those presented in sections 2 and 3. One needs only to refer to derivatives instead
of gradients of the magnitude. This point can be justified by the fact that both, gradients
and derivatives, have similar statistics when a mean flow exists and Taylor’s frozen flow
hypothesis is valid. We recover the results of one-component systems when we disregard
the crossed effects(H = S = 0). Note, finally, that the above results are independent of
any assumption about the existence in two-component systems of the two different turbulent
regimes, soft and hard turbulence, observed in one-component systems. One can expect,
based on the universality of turbulence, that these two regimes will also be present in binary
mixtures.

5. Discussion

In this paper we have presented a theory of fluctuations of scalars in binary mixtures.
The most important result of this paper is the existence of a dynamic coupling between
temperature and concentration fluctuations induced by the Soret and Dufour effects. In
one-component systems these fluctuations are statistically independent (one can observe
some correlations induced by the fact that both passive fluctuations are generated by the
same random velocity field; however, we do not refer to this kind of correlation). The first
effect derived from these couplings is the fact that in binary mixtures the dissipation rates
must depend on the two fluctuating fields. For instance, the local gradients of concentration
fluctuations can enhance or diminish the dissipation rate of temperature fluctuations. This
effect does not have a counterpart in one-component systems.
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To our knowledge, this is the first time that the fluctuation–dissipation relations for binary
mixtures have been presented in the literature. The fluctuation–dissipation relations for the
variablesX andY are not independent. The correlations betweenX, Y and the gradients
of T andc imply that the moments of the variableX(Y) are not entirely determined by the
correlations ofX2n(Y 2n) with the single variable(∇T )2((∇c)2).

We have also obtained closed expressions for the PDFs in the stationary limit of decaying
fluctuations. An important consequence of the coupling between the two fields of scalar
fluctuations is that, in general, the conditional probabilities and expectation values are not
symmetric functions ofX(Y). An immediate consequence of the last result is the loss of
symmetry of the probability distributions, that is,Px(−X) 6= Px(X) andPy(−Y ) 6= Py(Y ).

The most important shortcoming of the analysis is the absence of a numerical estimation
of the coefficientsd andE. The estimation could be done relating these parameters to the
turbulent scales of the problem. However, we do not have experimental or numerical
information about the fundamental turbulent scales of binary mixtures. Finally, we have
extended the above results to convective turbulence.

Besides the intrinsic interest of the fluctuation–dissipation relations and the PDFs the
results of this paper are useful as a possible guide to design tests on the existence and
relative importance of crossed effects in turbulence. The first possible test is based on
the dissipation rates. Let us only consider the case of temperature fluctuations. The mean
dissipation rate,〈k(∇T )2 + H(∇T ) · (∇c)〉, can be measured at different times. We can
also measure the mean direct dissipation rate〈k(∇T )2〉 and the scalar covariance of the
temperature fluctuationsQ. Then, using equation (6) we can determine whether the correct
variation of the scalar covariance is given by〈Z〉 or by the mean direct dissipation rate. A
second possibility is to consider directly the PDFs. The loss of theX,−X(Y,−Y ) symmetry
of the probability distributions would be a clear mark of the crossed effects. As remarked at
the end of section 3, the corroboration of equations (25) and (26) would also be a validation
of the hypotheses given by equation (24). A third possibility is the study of convective
turbulence. The advantage of this approach is the simplicity of the experiments. There is
an important experimental experience on the field (in one-component systems) and in the
techniques of analysis of the data [1, 9, 12]. Moreover, it is simple to reach a very wide
range of Reynolds numbers.

From all the experiments considered in the previous paragraph, only those based
on convective turbulence seem to be realizable in a simple way. This fact suggests
the possibility to explore numerically the other alternatives. As a matter of fact, the
numerical simulation is the method used to validate the PDFs of single fluids derived
in [4]. The extension of this type of simulation to binary mixtures seems to be simple. The
numerical evaluation of the dissipation rates would follow a procedure similar to those of
the PDFs. The most important difficulty to implement these numerical simulations is, as
remarked earlier, the lack of information about the turbulent scales of binary mixtures.
A previous exploration of this point would be necessary to develop these numerical
simulations.

We expect that the magnitude of the turbulent crossed effects will be small, especially in
nonconvective situations. In the nonturbulent regime it is possible to measure the magnitude
of the nonconvective crossed effects despite their smallness [11]. Invoking again the results
of [10] we have that the ratio between the direct and crossed components is of the same
order of magnitude in the turbulent and nonturbulent regimes and, consequently, we expect
that in nonconvective turbulence the crossed effects will also be measurable. On the other
hand, in the case of nonturbulent convective problems we have effects associated with the
crossed terms that are detected experimentally in a simpler way than in the nonconvective
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case [8]. We expect that the crossed effects in convective turbulence could be determined
experimentally with less difficulties than in nonconvective problems.
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